卷积神经网络基础(卷积神经网络基础ppt)
本篇文章给大家谈谈卷积神经网络基础,以及卷积神经网络基础ppt对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、卷积神经网络(CNN)基础
- 2、(7)卷积神经网络的基本结构
- 3、神经网络:卷积神经网络(CNN)
- 4、CNN(卷积神经网络)算法
- 5、GCN图卷积网络入门详解
- 6、PART 4 W1 卷积神经网络介绍
卷积神经网络(CNN)基础
在七月初七情人节,牛郎织女相见的一天,我终于学习了CNN(来自CS231n),感觉感触良多,所以赶快记下来,别忘了,最后祝大家情人节快乐5555555.正题开始!
CNN一共有卷积层(CONV)、ReLU层(ReLU)、池化层(Pooling)、全连接层(FC(Full Connection))下面是各个层的详细解释。
卷积,尤其是图像的卷积,需要一个滤波器,用滤波器对整个图像进行遍历,我们假设有一个32*32*3的原始图像A,滤波器的尺寸为5*5*3,用w表示,滤波器中的数据就是CNN的参数的一部分,那么在使用滤波器w对A进行滤波的话,可以用下面的式子表示:
其中x为原始图像的5*5*3的一部分,b是偏置项置为1。在对A进行滤波之后,产生的是一个28*28*1的数据。那么假设我们存在6个滤波器,这六个滤波器之间彼此是独立的,也就是他们内部的数据是不同的且没有相关性的。可以理解为一个滤波器查找整幅图像的垂直边缘,一个查找水平边缘,一个查找红色,一个查找黑色这样。那么我就可以产生6个28*28*1的数据,将它们组合到一起就可以产生28*28*6的数据,这就是卷积层主要做的工作。
CNN可以看作一系列的卷积层和ReLU层对原始数据结构进行处理的神经网络,处理的过程可以用下面这幅图表示
特别要注意的是滤波器的深度一定要与上一层传来的数据的深度相同,就像上图的第二个卷积层在处理传来的28*28*6的数据时要使用5*5*6的滤波器.
滤波器在图像上不断移动对图像滤波,自然存在步长的问题,在上面我们举的例子都是步长为1的情况,如果步长为3的话,32*32*3的图像经过5*5*3的滤波器卷积得到的大小是(32-5)/3+1=10, 注:步长不能为2因为(32-5)/2+1=14.5是小数。
所以当图像大小是N,滤波器尺寸为F时,步长S,那么卷积后大小为(N-F)/S+1
我们从上面的图中可以看到图像的长和宽在逐渐的减小,在经过超过5层之后极可能只剩下1*1的空间尺度,这样是十分不好的,而且也不利于我们接下来的计算,所以我们想让卷积层处理完之后图像在空间尺度上大小不变,所以我们引入了pad the border的操作。pad其实就是在图像周围补0,扩大图像的尺寸,使得卷积后图像大小不变。在CNN中,主要存在4个超参数,滤波器个数K,滤波器大小F,pad大小P和步长S,其中P是整数,当P=1时,对原始数据的操作如图所示:
那么在pad操作后卷积后的图像大小为:(N-F+2*P)/S+1
而要想让卷积层处理后图像空间尺度不变,P的值可以设为P=(F-1)/2
卷积层输入W 1 *H 1 *D 1 大小的数据,输出W 2 *H 2 *D 2 的数据,此时的卷积层共有4个超参数:
K:滤波器个数
P:pad属性值
S:滤波器每次移动的步长
F:滤波器尺寸
此时输出的大小可以用输入和超参计算得到:
W 2 =(W 1 -F+2P)/S+1
H 2 =(H 1 -F+2P)/S+1
D 2 =D 1
1*1的滤波器也是有意义的,它在深度方向做卷积,例如1*1*64的滤波器对56*56*64的数据卷积得到56*56的数据
F通常是奇数,这样可以综合考虑上下左右四个方向的数据。
卷积层从神经元的角度看待可以有两个性质: 参数共享和局域连接 。对待一个滤波器,例如5*5*3的一个滤波器,对32*32*3的数据卷积得到28*28的数据,可以看作存在28*28个神经元,每个对原图像5*5*3的区域进行计算,这28*28个神经元由于使用同一个滤波器,所以参数相同,我们称这一特性为 参数共享 。
针对不同的滤波器,我们可以看到他们会看到同一区域的图像,相当于在深度方向存在多个神经元,他们看着相同区域叫做 局域连接
参数共享减少了参数的数量,防止了过拟合
局域连接为查找不同特征更丰富的表现图像提供了可能。
卷积就像是对原图像的另一种表达。
激活函数,对于每一个维度经过ReLU函数输出即可。不改变数据的空间尺度。
通过pad操作,输出图像在控件上并没有变化,但是深度发生了变化,越来越庞大的数据给计算带来了困难,也出现了冗余的特征,所以需要进行池化操作,池化不改变深度,只改变长宽,主要有最大值和均值两种方法,一般的池化滤波器大小F为2步长为2,对于最大值池化可以用下面的图像清晰的表示:
卷积层输入W 1 *H 1 *D 1 大小的数据,输出W 2 *H 2 *D 2 的数据,此时的卷积层共有2个超参数:
S:滤波器每次移动的步长
F:滤波器尺寸
此时输出的大小可以用输入和超参计算得到:
W 2 =(W 1 -F)/S+1
H 2 =(H 1 -F)/S+1
D 2 =D 1
将最后一层(CONV、ReLU或Pool)处理后的数据输入全连接层,对于W 2 *H 2 *D 2 数据,我们将其展成1*1*W 2 *H 2 *D 2 大小的数据,输入层共有W 2 *H 2 *D 2 个神经元,最后根据问题确定输出层的规模,输出层可以用softmax表示。也就是说,全连接层就是一个常见的BP神经网络。而这个网络也是参数最多的部分,是接下来想要去掉的部分。完整的神经网络可以用下面的图表示:
[(CONV-ReLU)*N-POOL?]*M-(FC-RELU)*K,SoftMax
1.更小的滤波器与更深的网络
2.只有CONV层而去掉池化与全链接
最早的CNN,用于识别邮编,结构为:
CONV-POOL-CONV-POOL-CONV-FC
滤波器大小5*5,步长为1,池化层2*2,步长为2
2012年由于GPU技术所限,原始AlexNet为两个GPU分开计算,这里介绍合起来的结构。
输入图像为227*227*3
1.首次使用ReLU
2.使用Norm layers,现在已经抛弃,因为效果不大
3.数据经过预处理(例如大小变化,颜色变化等)
4.失活比率0.5
5.batch size 128
6.SGD Momentum 参数0.9(SGD和Momentum见我的其他文章)
7.学习速率 0.01,准确率不在提升时减少10倍,1-2次后达到收敛
8.L2权重减少0.0005
9.错误率15.4%
改进自AlexNet,主要改变:
1.CONV1的滤波器从11*11步长S=4改为7*7步长为2.
2.CONV3,4,5滤波器数量有384,384,256改为512,1024,512(滤波器数量为2的n次幂有利于计算机计算可以提高效率)
错误率:14.8%后继续改进至11.2%
当前最好的最易用的CNN网络,所有卷积层滤波器的大小均为3*3,步长为1,pad=1,池化层为2*2的最大值池化,S=2。
主要参数来自全连接层,这也是想要去掉FC的原因。
具有高度的统一性和线性的组合,易于理解,十分方便有VGG-16,VGG-19等多种结构。
错误率7.3%
完全移除FC层,参数只有500万,使用Inception模块(不太理解,有时间继续看)
准确率6.67%
准确率3.6%
拥有极深的网络结构,且越深准确率越高。是传统CNN不具备的特点,传统CNN并非越深越准确。需要训练时间较长但是快于VGG
1.每个卷积层使用Batch Normalization
2.Xavier/2初始化
3.SGD+Momentum(0.9)
4.Learning rate:0.1,准确率不变减小10倍(因为Batch Normalization所以比AlexNet大)
5.mini-batch size 256
6.Weight decay of 0.00001
7.不适用失活(因为Batch Normalization)
具体的梯度过程学完ResNet再说吧。
(7)卷积神经网络的基本结构
卷积神经网络主要结构有:卷积层、池化层、和全连接层。通过堆叠这些层结构形成一个卷积神经网络。将原始图像转化为类别得分,其中卷积层和全连接层拥有参数,激活层和池化层没有参数。参数更新通过反向传播实现。
(1)卷积层
卷积核是一系列的滤波器,用来提取某一种特征
我们用它来处理一个图片,当图像特征与过滤器表示的特征相似时,卷积操作可以得到一个比较大的值。
当图像特征与过滤器不相似时,卷积操作可以得到一个比较小的值,实际上,卷积的结果特征映射图显示的是对应卷积核所代表的特征在原始特征图上的分布情况。
每个滤波器在空间上(宽度和高度)都比较小,但是深度和输入数据保持一致(特征图的通道数),当卷积核在原图像滑动时,会生成一个二维激活图,激活图上每个空间位置代表原图像对该卷积核的反应。每个卷积层,会有一整个集合的卷积核,有多少个卷积核,输出就有多少个通道。每个卷积核生成一个特征图,这些特征图堆叠起来组成整个输出结果。
卷积核体现了参数共享和局部连接的模式。每个卷积核的大小代表了一个感受野的大小。
卷积后的特征图大小为(W-F+2*P)/s+1 ;P 为填充 s 为步长
(2)池化层
池化层本质上是下采样,利用图像局部相关性的原理(认为最大值或者均值代表了这个局部的特征),对图像进行子抽样,可以减少数据处理量同时保留有用信息。这里池化有平均池化,L2范式池化,最大池化,经过实践,最大池化的效果要好于平均池化(平均池化一般放在卷积神经网络的最后一层),最大池化有利于保存纹理信息,平均池化有利于保存背景信息。实际上(因为信息损失的原因)我们可以看到,通过在卷积时使用更大的步长也可以缩小特征映射的尺寸,并不一定要用池化,有很多人不建议使用池化层。32*32在5*5卷积核步长为1下可得到28*28。
池化操作可以逐渐降低数据体的空间尺寸,这样的话就能减少网络中参数的数量,使得计算资源耗费变少,也能有效控制过拟合。
(3)全连接层
通过全连接层将特征图转化为类别输出。全连接层不止一层,在这个过程中为了防止过拟合会引入DropOut。最新研究表明,在进入全连接层之前,使用全局平均池化可以有效降低过拟合。
(4)批归一化BN——Batch Normal
随着神经网络训练的进行,每个隐层的参数变化使得后一层的输入发生变化,从而每一批的训练数据的分布也随之改变,致使网络在每次迭代中都需要拟合不同的数据分布,增大训练复杂度和过拟合的风险,只能采用较小的学习率去解决。
通常卷积层后就是BN层加Relu。BN已经是卷积神经网络中的一个标准技术。标准化的过程是可微的,因此可以将BN应用到每一层中做前向和反向传播,同在接在卷积或者全连接层后,非线性层前。它对于不好的初始化有很强的鲁棒性,同时可以加快网络收敛速度。
(5)DropOut
Dropout对于某一层神经元,通过定义的概率来随机删除一些神经元,同时保持输入层与输出层神经元的个数不变,然后按照神经网络的学习方法进行参数更新,下一次迭代中,重新随机删除一些神经元,直至训练结束。
(6)softmax层
Softmax层也不属于CNN中单独的层,一般要用CNN做分类的话,我们习惯的方式是将神经元的输出变成概率的形式,Softmax就是做这个的: 。显然Softmax层所有的输出相加为1,按照这个概率的大小确定到底属于哪一类。
神经网络:卷积神经网络(CNN)
神经网络 最早是由心理学家和神经学家提出的,旨在寻求开发和测试神经的计算模拟。
粗略地说, 神经网络 是一组连接的 输入/输出单元 ,其中每个连接都与一个 权 相关联。在学习阶段,通过调整权值,使得神经网络的预测准确性逐步提高。由于单元之间的连接,神经网络学习又称 连接者学习。
神经网络是以模拟人脑神经元的数学模型为基础而建立的,它由一系列神经元组成,单元之间彼此连接。从信息处理角度看,神经元可以看作是一个多输入单输出的信息处理单元,根据神经元的特性和功能,可以把神经元抽象成一个简单的数学模型。
神经网络有三个要素: 拓扑结构、连接方式、学习规则
神经网络的拓扑结构 :神经网络的单元通常按照层次排列,根据网络的层次数,可以将神经网络分为单层神经网络、两层神经网络、三层神经网络等。结构简单的神经网络,在学习时收敛的速度快,但准确度低。
神经网络的层数和每层的单元数由问题的复杂程度而定。问题越复杂,神经网络的层数就越多。例如,两层神经网络常用来解决线性问题,而多层网络就可以解决多元非线性问题
神经网络的连接 :包括层次之间的连接和每一层内部的连接,连接的强度用权来表示。
根据层次之间的连接方式,分为:
1)前馈式网络:连接是单向的,上层单元的输出是下层单元的输入,如反向传播网络,Kohonen网络
2)反馈式网络:除了单项的连接外,还把最后一层单元的输出作为第一层单元的输入,如Hopfield网络
根据连接的范围,分为:
1)全连接神经网络:每个单元和相邻层上的所有单元相连
2)局部连接网络:每个单元只和相邻层上的部分单元相连
神经网络的学习
根据学习方法分:
感知器:有监督的学习方法,训练样本的类别是已知的,并在学习的过程中指导模型的训练
认知器:无监督的学习方法,训练样本类别未知,各单元通过竞争学习。
根据学习时间分:
离线网络:学习过程和使用过程是独立的
在线网络:学习过程和使用过程是同时进行的
根据学习规则分:
相关学习网络:根据连接间的激活水平改变权系数
纠错学习网络:根据输出单元的外部反馈改变权系数
自组织学习网络:对输入进行自适应地学习
摘自《数学之美》对人工神经网络的通俗理解:
神经网络种类很多,常用的有如下四种:
1)Hopfield网络,典型的反馈网络,结构单层,有相同的单元组成
2)反向传播网络,前馈网络,结构多层,采用最小均方差的纠错学习规则,常用于语言识别和分类等问题
3)Kohonen网络:典型的自组织网络,由输入层和输出层构成,全连接
4)ART网络:自组织网络
深度神经网络:
Convolutional Neural Networks(CNN)卷积神经网络
Recurrent neural Network(RNN)循环神经网络
Deep Belief Networks(DBN)深度信念网络
深度学习是指多层神经网络上运用各种机器学习算法解决图像,文本等各种问题的算法集合。深度学习从大类上可以归入神经网络,不过在具体实现上有许多变化。
深度学习的核心是特征学习,旨在通过分层网络获取分层次的特征信息,从而解决以往需要人工设计特征的重要难题。
Machine Learning vs. Deep Learning
神经网络(主要是感知器)经常用于 分类
神经网络的分类知识体现在网络连接上,被隐式地存储在连接的权值中。
神经网络的学习就是通过迭代算法,对权值逐步修改的优化过程,学习的目标就是通过改变权值使训练集的样本都能被正确分类。
神经网络特别适用于下列情况的分类问题:
1) 数据量比较小,缺少足够的样本建立模型
2) 数据的结构难以用传统的统计方法来描述
3) 分类模型难以表示为传统的统计模型
缺点:
1) 需要很长的训练时间,因而对于有足够长训练时间的应用更合适。
2) 需要大量的参数,这些通常主要靠经验确定,如网络拓扑或“结构”。
3) 可解释性差 。该特点使得神经网络在数据挖掘的初期并不看好。
优点:
1) 分类的准确度高
2)并行分布处理能力强
3)分布存储及学习能力高
4)对噪音数据有很强的鲁棒性和容错能力
最流行的基于神经网络的分类算法是80年代提出的 后向传播算法 。后向传播算法在多路前馈神经网络上学习。
定义网络拓扑
在开始训练之前,用户必须说明输入层的单元数、隐藏层数(如果多于一层)、每一隐藏层的单元数和输出层的单元数,以确定网络拓扑。
对训练样本中每个属性的值进行规格化将有助于加快学习过程。通常,对输入值规格化,使得它们落入0.0和1.0之间。
离散值属性可以重新编码,使得每个域值一个输入单元。例如,如果属性A的定义域为(a0,a1,a2),则可以分配三个输入单元表示A。即,我们可以用I0 ,I1 ,I2作为输入单元。每个单元初始化为0。如果A = a0,则I0置为1;如果A = a1,I1置1;如此下去。
一个输出单元可以用来表示两个类(值1代表一个类,而值0代表另一个)。如果多于两个类,则每个类使用一个输出单元。
隐藏层单元数设多少个“最好” ,没有明确的规则。
网络设计是一个实验过程,并可能影响准确性。权的初值也可能影响准确性。如果某个经过训练的网络的准确率太低,则通常需要采用不同的网络拓扑或使用不同的初始权值,重复进行训练。
后向传播算法学习过程:
迭代地处理一组训练样本,将每个样本的网络预测与实际的类标号比较。
每次迭代后,修改权值,使得网络预测和实际类之间的均方差最小。
这种修改“后向”进行。即,由输出层,经由每个隐藏层,到第一个隐藏层(因此称作后向传播)。尽管不能保证,一般地,权将最终收敛,学习过程停止。
算法终止条件:训练集中被正确分类的样本达到一定的比例,或者权系数趋近稳定。
后向传播算法分为如下几步:
1) 初始化权
网络的权通常被初始化为很小的随机数(例如,范围从-1.0到1.0,或从-0.5到0.5)。
每个单元都设有一个偏置(bias),偏置也被初始化为小随机数。
2) 向前传播输入
对于每一个样本X,重复下面两步:
向前传播输入,向后传播误差
计算各层每个单元的输入和输出。输入层:输出=输入=样本X的属性;即,对于单元j,Oj = Ij = Xj。隐藏层和输出层:输入=前一层的输出的线性组合,即,对于单元j, Ij =wij Oi + θj,输出=
3) 向后传播误差
计算各层每个单元的误差。
输出层单元j,误差:
Oj是单元j的实际输出,而Tj是j的真正输出。
隐藏层单元j,误差:
wjk是由j到下一层中单元k的连接的权,Errk是单元k的误差
更新 权 和 偏差 ,以反映传播的误差。
权由下式更新:
其中,△wij是权wij的改变。l是学习率,通常取0和1之间的值。
偏置由下式更新:
其中,△θj是偏置θj的改变。
Example
人类视觉原理:
深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和Torsten Wiesel,以及Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”, 可视皮层是分级的 。
人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。
对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:
在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。
可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。
卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。
CNN最早由Yann LeCun提出并应用在手写字体识别上。LeCun提出的网络称为LeNet,其网络结构如下:
这是一个最典型的卷积网络,由 卷积层、池化层、全连接层 组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。
CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。
降低参数量级:如果使用传统神经网络方式,对一张图片进行分类,那么,把图片的每个像素都连接到隐藏层节点上,对于一张1000x1000像素的图片,如果有1M隐藏层单元,一共有10^12个参数,这显然是不能接受的。
但是在CNN里,可以大大减少参数个数,基于以下两个假设:
1)最底层特征都是局部性的,也就是说,用10x10这样大小的过滤器就能表示边缘等底层特征
2)图像上不同小片段,以及不同图像上的小片段的特征是类似的,也就是说,能用同样的一组分类器来描述各种各样不同的图像
基于以上两个假设,就能把第一层网络结构简化
用100个10x10的小过滤器,就能够描述整幅图片上的底层特征。
卷积运算的定义如下图所示:
如上图所示,一个5x5的图像,用一个3x3的 卷积核 :
101
010
101
来对图像进行卷积操作(可以理解为有一个滑动窗口,把卷积核与对应的图像像素做乘积然后求和),得到了3x3的卷积结果。
这个过程可以理解为使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。在实际训练过程中, 卷积核的值是在学习过程中学到的。
在具体应用中,往往有多个卷积核,可以认为, 每个卷积核代表了一种图像模式 ,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果设计了6个卷积核,可以理解为这个图像上有6种底层纹理模式,也就是用6种基础模式就能描绘出一副图像。以下就是24种不同的卷积核的示例:
池化 的过程如下图所示:
可以看到,原始图片是20x20的,对其进行采样,采样窗口为10x10,最终将其采样成为一个2x2大小的特征图。
之所以这么做,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行采样。
即使减少了许多数据,特征的统计属性仍能够描述图像,而且由于降低了数据维度,有效地避免了过拟合。
在实际应用中,分为最大值采样(Max-Pooling)与平均值采样(Mean-Pooling)。
LeNet网络结构:
注意,上图中S2与C3的连接方式并不是全连接,而是部分连接。最后,通过全连接层C5、F6得到10个输出,对应10个数字的概率。
卷积神经网络的训练过程与传统神经网络类似,也是参照了反向传播算法
第一阶段,向前传播阶段:
a)从样本集中取一个样本(X,Yp),将X输入网络;
b)计算相应的实际输出Op
第二阶段,向后传播阶段
a)计算实际输出Op与相应的理想输出Yp的差;
b)按极小化误差的方法反向传播调整权矩阵。
CNN(卷积神经网络)算法
基础知识讲解:
卷积:通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。
前馈神经网络:各神经元分层排列,每个神经元只与前一层的神经元相连,接收前一层的输出,并输出给下一层.各层间没有反馈。
卷积神经网络:是一类包含卷积计算且具有深度结构的前馈神经网络
卷积核:就是图像处理时,给定输入图像,输入图像中一个小区域中像素加权平均后成为输出图像中的每个对应像素,其中权值由一个函数定义,这个函数称为卷积核。
下采样:对于一个样值序列间隔几个样值取样一次,这样得到新序列就是原序列的下采样。
结构介绍
输入层:用于数据输入
卷积层:利用卷积核进行特征提取和特征映射
激励层:非线性映射,卷积是线性映射,弥补不足
池化层:进行下采样,对特征图稀疏处理,减少数据运算量
全连接层:在CNN的尾部进行重新拟合,减少特征信息的损失
输入层:
在CNN的输入层中,(图片)数据输入的格式 与 全连接神经网络的输入格式(一维向量)不太一样。CNN的输入层的输入格式保留了图片本身的结构。
对于黑白的 28×28 的图片,CNN的输入是一个 28×28 的的二维神经元:
而对于RGB格式的28×28图片,CNN的输入则是一个 3×28×28 的三维神经元(RGB中的每一个颜色通道都有一个 28×28 的矩阵)
卷积层:
左边是输入,中间部分是两个不同的滤波器Filter w0、Filter w1,最右边则是两个不同的输出。
ai.j=f(∑m=02∑n=02wm,nxi+m,j+n+wb)
wm,n:filter的第m行第n列的值
xi,j: 表示图像的第i行第j列元素
wb:用表示filter的偏置项
ai,j:表示Feature Map的第i行第j列元素
f:表示Relu激活函数
激励层:
使用的激励函数一般为ReLu函数:
f(x)=max(x,0)
卷积层和激励层通常合并在一起称为“卷积层”。
池化层:
当输入经过卷积层时,若感受视野比较小,布长stride比较小,得到的feature map (特征图)还是比较大,可以通过池化层来对每一个 feature map 进行降维操作,输出的深度还是不变的,依然为 feature map 的个数。
池化层也有一个“池化视野(filter)”来对feature map矩阵进行扫描,对“池化视野”中的矩阵值进行计算,一般有两种计算方式:
Max pooling:取“池化视野”矩阵中的最大值
Average pooling:取“池化视野”矩阵中的平均值
训练过程:
1.前向计算每个神经元的输出值aj( 表示网络的第j个神经元,以下同);
2.反向计算每个神经元的误差项σj,σj在有的文献中也叫做敏感度(sensitivity)。它实际上是网络的损失函数Ed对神经元加权输入的偏导数
3.计算每个神经元连接权重wi,j的梯度( wi,j表示从神经元i连接到神经元j的权重)
1.最后,根据梯度下降法则更新每个权重即可。
参考:
GCN图卷积网络入门详解
在这篇文章中,我们将仔细研究一个名为GCN的著名图神经网络。首先,我们先直观的了解一下它的工作原理,然后再深入了解它背后的数学原理。
字幕组双语原文: 【GCN】图卷积网络(GCN)入门详解
英语原文: Graph Convolutional Networks (GCN)
翻译: 听风1996 、 大表哥
许多问题的本质上都是图。在我们的世界里,我们看到很多数据都是图,比如分子、社交网络、论文引用网络。
图的例子。(图片来自[1])
在图中,我们有节点特征(代表节点的数据)和图的结构(表示节点如何连接)。
对于节点来说,我们可以很容易地得到每个节点的数据。但是当涉及到图的结构时,要从中提取有用的信息就不是一件容易的事情了。例如,如果2个节点彼此距离很近,我们是否应该将它们与其他对节点区别对待呢?高低度节点又该如何处理呢?其实,对于每一项具体的工作,仅仅是特征工程,即把图结构转换为我们的特征,就会消耗大量的时间和精力。
图上的特征工程。(图片来自[1])
如果能以某种方式同时得到图的节点特征和结构信息作为输入,让机器自己去判断哪些信息是有用的,那就更好了。
这也是为什么我们需要图表示学习的原因。
我们希望图能够自己学习 "特征工程"。(图片来自[1])
论文 :基于图神经网络的半监督分类 (2017)[3]
GCN是一种卷积神经网络,它可以直接在图上工作,并利用图的结构信息。
它解决的是对图(如引文网络)中的节点(如文档)进行分类的问题,其中仅有一小部分节点有标签(半监督学习)。
在Graphs上进行半监督学习的例子。有些节点没有标签(未知节点)。
就像"卷积"这个名字所指代的那样,这个想法来自于图像,之后引进到图(Graphs)中。然而,当图像有固定的结构时,图(Graphs)就复杂得多。
从图像到图形的卷积思想。 (图片来自[1])
GCN的基本思路:对于每个节点,我们从它的所有邻居节点处获取其特征信息,当然也包括它自身的特征。假设我们使用average()函数。我们将对所有的节点进行同样的操作。最后,我们将这些计算得到的平均值输入到神经网络中。
在下图中,我们有一个引文网络的简单实例。其中每个节点代表一篇研究论文,同时边代表的是引文。我们在这里有一个预处理步骤。在这里我们不使用原始论文作为特征,而是将论文转换成向量(通过使用NLP嵌入,例如tf-idf)。NLP嵌入,例如TF-IDF)。
让我们考虑下绿色节点。首先,我们得到它的所有邻居的特征值,包括自身节点,接着取平均值。最后通过神经网络返回一个结果向量并将此作为最终结果。
GCN的主要思想。我们以绿色节点为例。首先,我们取其所有邻居节点的平均值,包括自身节点。然后,将平均值通过神经网络。请注意,在GCN中,我们仅仅使用一个全连接层。在这个例子中,我们得到2维向量作为输出(全连接层的2个节点)。
在实际操作中,我们可以使用比average函数更复杂的聚合函数。我们还可以将更多的层叠加在一起,以获得更深的GCN。其中每一层的输出会被视为下一层的输入。
2层GCN的例子:第一层的输出是第二层的输入。同样,注意GCN中的神经网络仅仅是一个全连接层(图片来自[2])。
让我们认真从数学角度看看它到底是如何起作用的。
首先,我们需要一些注解
我们考虑图G,如下图所示。
从图G中,我们有一个邻接矩阵A和一个度矩阵D。同时我们也有特征矩阵X。
那么我们怎样才能从邻居节点处得到每一个节点的特征值呢?解决方法就在于A和X的相乘。
看看邻接矩阵的第一行,我们看到节点A与节点E之间有连接,得到的矩阵第一行就是与A相连接的E节点的特征向量(如下图)。同理,得到的矩阵的第二行是D和E的特征向量之和,通过这个方法,我们可以得到所有邻居节点的向量之和。
计算 "和向量矩阵 "AX的第一行。
在问题(1)中,我们可以通过在A中增加一个单位矩阵I来解决,得到一个新的邻接矩阵Ã。
取lambda=1(使得节点本身的特征和邻居一样重要),我们就有Ã=A+I,注意,我们可以把lambda当做一个可训练的参数,但现在只要把lambda赋值为1就可以了,即使在论文中,lambda也只是简单的赋值为1。
通过给每个节点增加一个自循环,我们得到新的邻接矩阵
对于问题(2): 对于矩阵缩放,我们通常将矩阵乘以对角线矩阵。在当前的情况下,我们要取聚合特征的平均值,或者从数学角度上说,要根据节点度数对聚合向量矩阵ÃX进行缩放。直觉告诉我们这里用来缩放的对角矩阵是和度矩阵D̃有关的东西(为什么是D̃,而不是D?因为我们考虑的是新邻接矩阵Ã 的度矩阵D̃,而不再是A了)。
现在的问题变成了我们要如何对和向量进行缩放/归一化?换句话说:
我们如何将邻居的信息传递给特定节点?我们从我们的老朋友average开始。在这种情况下,D̃的逆矩阵(即,D̃^{-1})就会用起作用。基本上,D̃的逆矩阵中的每个元素都是对角矩阵D中相应项的倒数。
例如,节点A的度数为2,所以我们将节点A的聚合向量乘以1/2,而节点E的度数为5,我们应该将E的聚合向量乘以1/5,以此类推。
因此,通过D̃取反和X的乘法,我们可以取所有邻居节点的特征向量(包括自身节点)的平均值。
到目前为止一切都很好。但是你可能会问加权平均()怎么样?直觉上,如果我们对高低度的节点区别对待,应该会更好。
但我们只是按行缩放,但忽略了对应的列(虚线框)。
为列增加一个新的缩放器。
新的缩放方法给我们提供了 "加权 "的平均值。我们在这里做的是给低度的节点加更多的权重,以减少高度节点的影响。这个加权平均的想法是,我们假设低度节点会对邻居节点产生更大的影响,而高度节点则会产生较低的影响,因为它们的影响力分散在太多的邻居节点上。
在节点B处聚合邻接节点特征时,我们为节点B本身分配最大的权重(度数为3),为节点E分配最小的权重(度数为5)。
因为我们归一化了两次,所以将"-1 "改为"-1/2"
例如,我们有一个多分类问题,有10个类,F 被设置为10。在第2层有了10个维度的向量后,我们将这些向量通过一个softmax函数进行预测。
Loss函数的计算方法很简单,就是通过对所有有标签的例子的交叉熵误差来计算,其中Y_{l}是有标签的节点的集合。
层数是指节点特征能够传输的最远距离。例如,在1层的GCN中,每个节点只能从其邻居那里获得信息。每个节点收集信息的过程是独立进行的,对所有节点来说都是在同一时间进行的。
当在第一层的基础上再叠加一层时,我们重复收集信息的过程,但这一次,邻居节点已经有了自己的邻居的信息(来自上一步)。这使得层数成为每个节点可以走的最大跳步。所以,这取决于我们认为一个节点应该从网络中获取多远的信息,我们可以为#layers设置一个合适的数字。但同样,在图中,通常我们不希望走得太远。设置为6-7跳,我们就几乎可以得到整个图,但是这就使得聚合的意义不大。
例: 收集目标节点 i 的两层信息的过程
在论文中,作者还分别对浅层和深层的GCN进行了一些实验。在下图中,我们可以看到,使用2层或3层的模型可以得到最好的结果。此外,对于深层的GCN(超过7层),反而往往得到不好的性能(虚线蓝色)。一种解决方案是借助隐藏层之间的残余连接(紫色线)。
不同层数#的性能。图片来自论文[3]
论文作者的说明
该框架目前仅限于无向图(加权或不加权)。但是,可以通过将原始有向图表示为一个无向的两端图,并增加代表原始图中边的节点,来处理有向边和边特征。
对于GCN,我们似乎可以同时利用节点特征和图的结构。然而,如果图中的边有不同的类型呢?我们是否应该对每种关系进行不同的处理?在这种情况下如何聚合邻居节点?最近有哪些先进的方法?
在图专题的下一篇文章中,我们将研究一些更复杂的方法。
如何处理边的不同关系(兄弟、朋友、......)?
[1] Excellent slides on Graph Representation Learning by Jure Leskovec (Stanford):
[2] Video Graph Convolutional Networks (GCNs) made simple:
[3] Paper Semi-supervised Classification with Graph Convolutional Networks (2017):
[4] GCN source code:
[5] Demo with StellarGraph library:
雷锋字幕组是一个由AI爱好者组成的翻译团队,汇聚五五多位志愿者的力量,分享最新的海外AI资讯,交流关于人工智能技术领域的行业转变与技术创新的见解。
团队成员有大数据专家,算法工程师,图像处理工程师,产品经理,产品运营,IT咨询人,在校师生;志愿者们来自IBM,AVL,Adobe,阿里,百度等知名企业,北大,清华,港大,中科院,南卡罗莱纳大学,早稻田大学等海内外高校研究所。
如果,你也是位热爱分享的AI爱好者。欢迎与雷锋字幕组一起,学习新知,分享成长。
PART 4 W1 卷积神经网络介绍
一个是图像分类:如猫脸识别等;一个是目标检测:如无人驾驶技术中的各种交通信号检测技术
1. 卷积操作及过滤器/卷积核的概念
如上图所示:最左侧矩阵是一个灰度图像,中间是一个3*3的小矩阵,称为“卷积核”或“过滤器”。
卷积:先把卷积核放到灰度图像左上角(绿色框),盖住灰度图像上一个3*3的矩阵区域,然后9对对应的元素相乘,然后求和(得到0),然后把卷积核逐渐移动一行一行的“扫描”,最终得到最右侧矩阵。上述操作叫做“卷积”,最右侧矩阵是卷积的输出。
2. 垂直边缘检测
仍以上图为例,可以看到3*3的卷积核具体的数值构成为“左边一列1,中间一列0,右边一列-1”,这种卷积核在“扫描”灰度图像时,可以检测到灰度图像的垂直边缘。分析如下:
1)假设正在扫描的灰度区域没有垂直边缘,意味着区域内的值在左右方向上分布差不多,与卷积核做完运算后,左边的乘1,右边的乘-1,相加正好有一定的抵消作用,其实计算出来的结果会接近0。即:卷积结果接近0代表没有边缘。
2)有垂直边缘分为两种情况:目标区域“左边值较大,右边值较小” 或“左边值较小,右边值较大”。前一种情况在卷积操作后会得到一个较大的正值,后一种情况卷积操作后会得到一个较大的负值。
可以看出,较大的正值代表着目标区域的变化趋势与卷积核相同,即检测到的是与卷积核相同的边缘,而较大的负值代表目标区域的变化趋势与卷积核相反,即检测到的是与卷积核相反的边缘。
3. 卷积应用在卷积神经网络中
卷积操作如何应用于神经网络中?简言之,卷积核本身就是网络要学习的参数。如上图所示,我们并不是事先设定好要检测垂直边缘或水平边缘或其它什么边缘,而是要网络去学习要检测什么东西。
1. padding的原因
在上节展示的卷积操作中,可以看出,假设输入图像的大小为n*n,而卷积核的大小为f*f,那么卷积核从输入图像的左上角扫描到右下角,最终得到的结果大小为(n-f+1)*(n-f+1),意味着如果一次次进行卷积,那么结果的尺寸会越来越小
另外,显然输入图像边缘的像素被使用的较少(最边缘的像素仅被使用一次),这显然会造成信息的丢失。
2. 如何进行padding
非常简单:把输入图像的四周补充p = (f-1)/2 圈的0,这样输入的图像尺寸变成了(n+2p)*(n+2p),因此卷积后的大小变成了(n+2p -f + 1)*(n+2p -f + 1)=n*n,即与原始的图像有了相同的大小,且原始图像边缘的像素也被较多的利用到。
3. 几点补充
(1)卷积核的尺寸设置为 奇数 :因为① 这样(f-1)/2就恰好是整数了,方便进行padding,② 有中心像素,便于表征卷积核的位置,等。
(2)根据是否进行padding,分为 普通卷积(valid) 和 同尺寸卷积(same)
1. 步长概念
在上文中讲到卷积,即使用一个卷积核对输入图像进行“扫描”并进行相应计算时,提到这个“扫描”是逐个像素逐个像素的迈进的。但是,并不一定非得这样,也可以每次跨越两个或更多个像素,这就是“步长”的概念,一般用s表示
2. 卷积结果尺寸与步长的关系
前文提到,若输入图像尺寸为n*n,卷积核尺寸为f*f,则卷积结果尺寸为(n+f-1)*(n+f-1),若算上padding操作,则结果为(n+2p -f + 1)*(n+2p -f + 1)。这是在步长s=1的前提下成立。若步长不为1,则结果为floor((n+2p-f)/s+1)**2
3. 其它:数学中的卷积和神经网络中的卷积
需要说明的是,神经网络中所说的卷积和数学中说的卷积不是一回事,但数学中的卷积是啥就不追究了。
神经网络中的卷积操作,在数学的描述上,更像是一种“交叉相关性”的计算,可以看出,若目标区域与卷积核有类似的分布,则会计算出较大的正值(正相关),若有相反的分布,则会计算出较大的负值(负相关),若没什么关系,则会计算出接近0的值(不相关)。卷积操作的确很像一种相关性的计算。
1. RGB图像的数学构成
灰度图像是一个n*n的二维矩阵,彩色图像则是n*n*3 的三维矩阵,最***的三个维度分别代表了RGB三原色的值,其中数字“3”在卷积神经网络中被称为通道数或信道数
2. 对RGB图像进行卷积
在对灰度图像进行卷积时,使用的是f*f的二维卷积核。在对RGB图像进行卷积时,则卷积核的维度也+1,变成了f*f*3。一次卷积的结果仍然是把所有的值加起来输出一个值。即: 一个三维的图像,和一个三维的卷积核,在进行完卷积操作后,输出的是一个二维的矩阵(如上图) 。
3. 当使用多个卷积核时的输出
如上图所示,可以使用多个卷积核(一个亮黄色,一个屎黄色)。根据前文描述,一个立体的卷积核在一个立体的矩阵上扫描完,结果是一个二维的。但当使用多个卷积核时,则输出了多个二维矩阵,这些二维矩阵沿着第三个维度排列到一起,使得结果重新变成了三维。此时,第三个维度的尺寸,反应的是卷积核数,也就是说 卷积核数就是信道数 。直观理解,每一个卷积核代表着检测了某一种特征,多个卷积核就是同时检测了多种特征,传递了多种信息。
1. 一个卷积层的数据的基本流
如上图所示,由于卷积核本身就是一堆待学参数w,所以卷积操作本质还是“加权求和”,之后会加入偏置值,然后进行非线性变换,然后输出(到下一层),可见还是那一套。
需要提一下的是,卷积的输入不一定是原始图像构成的矩阵,还有可能是上一个卷积的结果。原始图像是彩色的,有多个通道。卷积时可以用多个卷积核,最终产生的结果也是立体的。因此原始的输入与中间卷积层的输出,在数学形式上是统一的。因此可以“输入-卷积层-卷积层-...”这样操作。
2. 卷积层的参数规模
一个卷积层总的参数规模(包括w,不包括b)为: ,即:卷积核的大小的平方*上层输出的通道数)*本层所用的卷积核数。与上层输入的大小无关(但与通道数有关)
3. 一个卷积层涉及到的超参
卷积核的大小、是否padding、步长、卷积核数。
1. 一个示例
上图为一个简单的卷积神经网络示例: 一层一层的卷积,最后把所有的元素展开成一个一维向量,然后加一个全连接层。
2. 注意以下几点:
1⃣️ 实际上CNN会有卷积层、池化层、全连接层,而非仅有卷积和全连接;
2⃣️ 从数据的构成形式上看,按照网络从前往后的顺序,图片尺寸不断减小,信道数量不断增加。一般遵从这个趋势。
1. 池化
如上图所示,假设输入是一个4*4的矩阵,现在我们把它分割成2*2四个子矩阵(或者说使用一个2*2的核以2为步长扫描矩阵),对四个子区域分别求最大值,最终得到一个值为9、2、6、3的2*2的矩阵输出。这种操作就叫池化,具体为最大值池化。
2. 池化的作用
1⃣️ 一般来说,较大的值往往代表学到了一个重要或典型的特征,把原始输入以某种方式滤除掉一些不重要的值,只保留一些较大的值,相当于 强化了一些重要信息的表达 。2⃣️ 降低图片的尺寸,可以节省空间、加速运算等。
3. 池化的特点
并没有需要学习的参数(w、b之类的),也因此“池化层”一般并不被称为单独的一层。在卷积神经网络中,通常把一个卷积层+一个池化层的组合叫一层。
4. 池化的超参数及经验值
池化层没有要学习的参数,只有核心的两个超参:池化核的大小、池化步长。此外还有池化所用的reduce操作:最大或者平均(没有其它选项)。
一般把池化核的大小设置为3或2,步长为2。注意:步长为2意味着把图片减小到原来的一半。
reduce操作最常用最大池化,偶尔用平均池化,不会用其它操作。
上图为一个典型的卷积神经网络示例,描述如下:
输入层 :彩色的手写数字图片,数学构成为32*32*3的矩阵,其中3为通道数。
Layer 1-卷积层 :1)使用6个5*5*3的卷积核,以步长为1对输入层进行卷积,输出28*28*6的矩阵,2)然后使用2*2的最大池化,步长为2,最终输出14*14*6的矩阵。其中14为图片尺寸,6为信道数。
Layer2-卷积层 :1)使用16个5*5*3的卷积核以步长1对上层输出进行卷积,输出10*10*16的矩阵,2)然后使用2*2的最大池化,步长为2,最终输出5*5*16的矩阵。
Layer3-全连接层: 把上层输出的5*5*16矩阵展开成1*400的一维向量,以120*400的权重矩阵送入本层120个神经元,激活后输出。
Layer4-全连接层: 120-84,激活后输出
输出层 :84 - 10,然后softmax后输出。
1. 参数少
假如原始图片尺寸为100*100*3,假设使用全连接,即使第二层仅用100个神经元,那也已经产生了100*100*3*100 = 300w个参数,难以想象。
假设使用卷积层,使用10个10*10*3的卷积核,那就是只有3000个参数,而能输出的矩阵规模是91*91*10=81000
2. 参数少的原因
1)稀疏连接:卷积核扫描矩阵产生输出,这个过程就从“神经元连接”的角度看,输入的左上角只连着输出的左上角,右上角只连右上角,而非“全连接”,参数就会少很多。2)参数共享:这么稀疏的连接,还是使用了同一套参数,进一步减少了参数的量。
3. 参数共享的其它好处
如果图片上有一只猫,那么不管这个猫在图片的什么位置,都不改变“这是一张猫的照片”。使用参数共享时,相当于用同样的特征提取作用到整个图片的各个区域,适应平移不变性,增强鲁棒性。
关于卷积神经网络基础和卷积神经网络基础ppt的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。