首页 大数据 正文

大数据金融的定义和特点(大数据金融的定义和特点是)

大数据 41
今天给各位分享大数据金融的定义和特点的知识,其中也会对大数据金融的定义和特点是进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、什么是大数据金融?不要文字游戏,通俗的说明?

今天给各位分享大数据金融的定义和特点的知识,其中也会对大数据金融的定义和特点是进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

什么是大数据金融?不要文字游戏,通俗的说明?

所谓大数据金融,就是用超级电脑收集海量的信息,通过各种算法来对金融产品进行精确营销的一种方法。

通俗来讲就是银行强势收集用户的信息,从身份证,到生物信息列如指纹,虹膜纹,人脸识别,资金使用情况,购物习惯,工作情况,家庭收入,个人收入,健康状态,家庭情况,人际关系。性格趋向等等等等。都被统一上传到电脑云端。经过计算和鉴别,来对客户进行推介和评估。

大数据金融是什么

大数据金融是指集合海量非结构化数据,通过对其进行实时分析,可以为互联网金融机构提供客户全方位信息,通过分析和挖掘客户的交易和消费信息掌握客户的消费习惯,并准确预测客户行为,使金融机构和金融服务平台在营销和风控方面有的放矢。

大数据金融的内容:基于大数据的金融服务平台主要指拥有海量数据的电子商务企业开展的金融服务。大数据的关键是从大量数据中快速获取有用信息的能力,或者是从大数据资产中快速变现的能力,因此,大数据的信息处理往往以云计算为基础。

扩展资料:

大数据金融的弊端:

1、大数据对个人信息的大量获取导致了隐私和安全问题。

随着个人所在或行经位置、购买偏好、健康和财务情况的海量数据被收集,再加上金融交易习惯、持有资产分布、以及信用状况以更细致的方式被储存和分析,机构投资者和金融消费者能获得更低的价格、更符合需要的金融服务,从而提高市场配置金融资源的能力。

但同时,金融市场乃至整个社会管理的信息基础设施将变得越来越一体化和外向型,对隐私、数据安全和知识产权构成更大风险。就个人隐私而言,大数据的隐私问题远远超出了常规的身份确认风险的范畴。

2、大数据技术不能代替人类价值判断和逻辑思考。

大数据是人类设计的产物,大数据的工具(如Hadoop软件)并不能使人们摆脱曲解、隔阂和成见,数据之间相关性也不等同于因果关系,大数据还存在选择性覆盖问题。

例如,社交媒体是大数据分析的重要信息源,但其中年轻人和城市人的比例偏多,还存在大量由程序控制的“机器人”账号或“半机器人”账号。波

士顿的 StreetBump应用程序为统计城市路面坑洼情况,从驾驶员的智能手机上收集数据,可能少计年老和贫困市民较多区域的情况;“谷歌流感趋势”曾高估了 2012年流感发病率。这说明依赖有缺陷的大数据可能给政府决策造成负面影响,还可能加剧社会不公。

3、基于大数据开发的金融产品和交易工具对金融监管提出挑战。

大数据的使用正在改变金融市场,也需要改变监管市场的方式,以保证市场参与者负责地使用大数据。

例如,2010年5月的“闪电暴跌”(flashcrash)令道琼斯工业平均指数 突然大跌,美国监管部门认为是高频交易造成了快速抛售引发的更多抛售。大数据中的一个数据点出错就能导致“无厘头暴跌”。

监管机构限制大数据技术的使用,或是对其使用进行直接干预,其潜在风险是巨大的,应鼓励业界对更复杂的技术乃至更大数据的利用。

参考资料来源:百度百科—大数据

什么是大数据金融?

大数据金融就是利用大数据的方法,分析金融行业数据、金融参与者的行为模式与产品风险模型,进行金融战略规划、金融产品设计和金融产品创新的一种金融服务与应用模式。

大数据金融-第一章 大数据金融概论

1.大数据与小数据

2.大数据的内涵

(1) 数据类型方面

(2) 技术方法方面

(3) 分析应用方面

3.大数据的特征

多样性:随着互联网的发展和传感器种类的增多,诸如网页、图片、音频、视频、微博类的未加工的半结构化和非结构化数据越来越多,以数量激增、类型繁多的非结构化数据为主。非结构化数据相对于结构化数据而言更加复杂,数据存储和处理的难度增大。

时效性:大数据的时效性是指在数据量特别大的情况下,能够在一定的时间和范围内得到及时处理,这是大数据区别于传统数据挖掘最显著的特征。只有对大数据做到实时创建、实时存储、实时处理和实时分析,才能及时有效的获得高价值的信息。

价值型:包含很多深度的价值,大数据分析挖掘和利用将带来巨大的商业价值。

4.大数据与传统数据的区别

5.大数据的产生背景

1.按照大数据结构分类

2. 按照大数据获取处理方式分类

3.按照其他方式分类

1.销售机会增多

0. 商业大数据的来源

1. 客户

2. 市场

3. 商品

4. 供应链

0. 数据来源

2. 市场与精准营销

3. 客户关系管理

4. 企业运营管理

5. 数据商业化

0. 数据来源

2. 付款定价

3. 研发

4. 新的商业模式

5. 公共健康

1. 营销

2. 服务

3. 运营

4. 风控

大数据金融是指运用 大数据技术和大数据平台 开展 金融活动和金融服务 ,对金融行业 积累的大数据以及外部数据 进行云计算等信息化处理,结合传统金融,开展资金融通、创新金融服务。

1. 呈现方式网络化

大量的金融产品和服务通过网络呈现。

2. 风险管理有所调整

风险管理理念 ——财务分析(第一还款来源)、可抵押财产或其他保证(第二还款来源)重要性将有所降低。

风险定价方式 ——更注重将交易行为的真实性、信用的可信度通过数据来呈现。

对客户的评价 ——全方位、立体的/活生生的。

风险管理的主要手段 ——基于数据挖掘对客户进行识别和分类。

3. 信息不对称降低

4. 金融业务效率提高

在合适的时间、合适的地点,把合适的产品以合适的方式提供给合适的消费者。

5. 金融企业服务边界扩大

由于效率提升,其经营成本必然随之下降,最适合扩大经营规模。

金融从业人员个体服务对象会更多。

6. 产品是可控的、可受的

通过网络化呈现的金融产品,对消费者而言,其收益或成本、产品的流动性是可以接受的,其风险是可控的。

7. 普惠金融

大数据金融的高效率性及扩展的服务边界,使金融服务的对象和范围也大大扩展,金融服务也更接地气。

1. 放贷快捷,精准营销个性化服务

立足长期大量的信用及资金流的大数据基础之上,在任何时点都可以通过计算得出信用评分,并采用网上支付方式,实时根据贷款需要及其信用评分等数据进行放贷。

2. 客户群体大,运营成本低

大数据金融是以大数据云计算为基础,以大数据自动计算为主,不需要大量人工,成本较低,整合了碎片化的需求和供给,服务领域拓展至更多的中小企业和中小客户。

3. 科学决策,有效风控

根据交易借贷行为的违约率等相关指标估计信用评分,运用分布式计算做出风险评估模型,解决信用分配、风险评估、授权实施以及欺诈识别等问题,有效地降低了不良贷款率。

基于 电商平台基础 上形成的网上交易信息与网上支付形成的金融大数据,利用云计算等先进技术对数据进行处理分析而形成的信用或订单融资模式。

典型代表有 阿里小贷 ,基于对电商平台的 交易数据、社交网络的用户交易与交互信息和购物行为习惯 等的大数据通过 云计算 来实时计算得分和分析处理,形成网络商户在电商平台中的累积信用数据,通过电商所构建的网络信用评级体系和金融风险计算模型及风险控制体系,来实时向网络商户发放订单贷款或者信用贷款,例如,阿里小贷可实现数分钟之内发放贷款。

企业利用自身所处的 产业链上下游 (原料商、制造商、分销商、零售商),充分整合供应链资源和客户资源,提供金融服务而形成的金融模式。

京东商城、苏宁易购是供应链金融的典型代表。

在供应链金融模式当中, 电商平台只是作为信息中介提供大数据金融 ,并不承担融资风险及防范风险等。—— 渠道商为核心企业。

大数据金融是不是互联网金融

大数据并不是单指互联网金融。

大数据金融是指依托于海量、非结构化的数据,通过互联网、云计算等信息化方式对其数据进行专业化的挖掘和分析,并与传统金融服务相结合,创新性开展相关资金融通工作的统称。 

大数据金融扩充了金融业的企业种类,不再是传统金融独大,并创新了金融产品和服务,扩大了客户范围,降低了企业成本。大数据金融按照平台运营模式,可分为平台金融和供应链金融两大模式。两种模式代表企业分别为阿里金融和京东金融。

拓展资料:

互联网金融行业面临大洗牌

在去杠杆的严监管的大背景下,近期信用风险事件频频爆发,根据网贷之家的数据显示,自6月以来,P2P行业新增问题平台133家,其中95家发布了相关逾期或停业兑付公告。

违约事件频发的主要原因1)随着市面上资金收紧,一些资质较差的企业出现债务违约,影响到相关P2P平台2)一些产品不合规、风控能力较差的平台,高返利的平台受到资金收紧的影响资金链断裂3)P2P平台频繁暴雷,引发投资者恐慌性挤兑,一些运营良好的P2P平台受到波及导致兑付困难。

短期来看行业集中暴雷会导致行业承压,另一方面随着不良企业出清,风控良好、经营合规的头部互金公司有望迎来快速发展,互联网金融企业能够服务一些传统金融机构难以触及的领域作为传统金融机构有效补充,随着百行征信建立,征信体系的逐渐完善,预计行业风控能力将显著提升,重点关注行业头部企业

大数据金融的定义和特点的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于大数据金融的定义和特点是、大数据金融的定义和特点的信息别忘了在本站进行查找喔。

扫码二维码