人工智能的知识表示的方法主要有(人工智能常用的知识表示方法包括)

人工智能 37
今天给各位分享人工智能的知识表示的方法主要有的知识,其中也会对人工智能常用的知识表示方法包括进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、那些方法表示人工智能体状态

今天给各位分享人工智能的知识表示的方法主要有的知识,其中也会对人工智能常用的知识表示方法包括进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

那些方法表示人工智能体状态

表示人工智能体状态法如下:

1、状态空间表示

问题求解(problem solving)是个大课题,它涉及归约、推断、决策、规划、常识推理、定理证明和相关过程等核心概念。在分析了人工智能研究中运用的问题求解方法之后,就会发现许多问题求解方法是采用试探搜索方法的。

这些方法是通过在某个可能的解答空间内寻找一个解来求解问题的。这种基于解答空间的问题表示和求解方法就是状态空间法,它是以状态和算符(operator)为基础来表示和求解问题的。

2、问题归约表示

问题归约( problem reduction)是另一种基于状态空间的问题描述与求解方法。已知问题的描述,通过一系列变换把此问题最终变为一个子问题集合;这些子问题的求解可以直接得到,从而解决了初始问题。

3、谓词逻辑表示

虽然命题逻辑( propositional logic)能够把客观世界的各种事实表示为逻辑命题,但是它具有较大的局限性,不适合于表示比较复杂的问题。谓词逻辑( predicate logic)允许表达那些无法用命题逻辑表达的事情。

逻辑语句,更具体地说,一阶谓词演算( first order predicate calculus)是一种形式语言,其根本目的在于把数学中的逻辑论证符号化。如果能够采用数学演绎的方式证明一个新语句是从那些已知正确的语句导出的,那么也就能断定这个新语句也是正确的。

4、语义网络表示

语义网络是知识的一种结构化图解表示,它由节点和弧线或链线组成。节点用于表示实体、概念和情况等,弧线用于表示节点间的关系。

5、过程表示

语义网络和框架等知识表示方法,均是对知识和事实的一种静止的表达方法,称这类知识表达方式为陈述式知识表达,它强调的是事物所涉及的对象是什么,是对事物有关知识的静态描述,是知识的一种显示表达形式。而对于如何使用这些知识,则通过控制策略来决定。

什么是知识?它有哪些特性?列举至少六种知识表示方法?

知识是符合文明方向的,人类对物质世界以及精神世界探索的结果总和。知识,至今也没有一个统一而明确的界定。但知识的价值判断标准在于实用性,以能否让人类创造新物质,得到力量和权力等等为考量。

有一个经典的定义来自于柏拉图:一条陈述能称得上是知识必须满足三个条件,它一定是被验证过的,正确的,而且是被人们相信的,这也是科学与非科学的区分标准。

由此看来,知识属于文化,而文化是感性与知识上的升华,这就是知识与文化之间的关系。有关于知识的悖论是:知识如果不能改变行为,就没有用处;但是知识一旦改变了行为,知识本身就立刻失去意义——《未来简史》。

经过国内外学者的共同努力,目前已经有许多知识表示方法得到了深入的研究,目前使用较多的知识表示方法主要有以下几种知识表示方法。

(1)逻辑表示法

逻辑表示法以谓词形式来表示动作的主体、客体,是一种叙述性知识表示方法。利用逻辑公式,人们能描述对象、性质、状况和关系。它主要用于自动定理的证明。逻辑表示法主要分为命题逻辑和谓词逻辑。

(2)产生式表示法

产生式表示,又称规则表示,有的时候被称为IF-THEN 表示,它表示一种条件-结果形式,是一种比较简单表示知识的方法。IF 后面部分描述了规则的先决条件,而THEN 后面部分描述了规则的结论。规则表示方法主要用于描述知识和陈述各种过程知识之间的控制,及其相互作用的机制。

(3)框架表示

框架(Frame)是把某一特殊事件或对象的所有知识储存在一起的一种复杂的数据结构。其主体是固定的,表示某个固定的概念、对象或事件,其下层由一些槽(Slot)组成,表示主体每个方面的属性。

(4)面向对象的表示方法

面向对象的知识表示方法是按照面向对象的程序设计原则组成一种混合知识表示形式,就是以对象为中心,把对象的属性、动态行为、领域知识和处理方法等有关知识封装在表达对象的结构中。

(5)语义网表示法

语义网络是知识表示中最重要的方法之一,是一种表达能力强而且灵活的知识表示方法。它通过概念及其语义关系来表达知识的一种网络图。从图论的观点看,它是一个“带标识的有向图”。

语义网络利用节点和带标记的边构成的有向图描述事件、概念、状况、动作及客体之间的关系。带标记的有向图能十分自然的描述客体之间的关系。

例:用语义网络表示下列知识:中南大学湘雅医学院是一所大学,位于长沙市,建立时间是1914 年。

(6)基于XML 的表示法

在XML(eXtensible Markup language,可扩展标记语言)中,数据对象使用元素描述,而数据对象的属性可以描述为元素的子元素或元素的属性。XML 文档由若干个元素构成,数据间的关系通过父元素与子元素的嵌套形式体现。

在基于XML 的知识表示过程中,采用XML 的DTD(Document Type definitions,文档类型定义)来定义一个知识表示方法的语法系统。

扩展资料:

从一般意义上讲,知识表示就是为描述世界所做的一组约定,是知识的符号化、形式化或模型化;从计算机科学的角度来看,知识表示是研究计算机表示知识的可行性、有效性的一般方法,是把人类知识表示成机器能处理的数据结构和系统控制结构的策略。

一个完整知识表示过程是:首先是设计者针对各种类型的问题设计多种知识表示方法;然后表示方法的使用者选用合适的表示方法表示某类知识;最后知识的使用者使用或者学习经过表示方法处理后的知识。

所以,知识表示的客体就是知识;知识表示的主体包括3 类:表示方法的设计者、表示方法的使用者、知识的使用者。具体来说,知识表示的主体主要指的是人(个人或集体),有时也可能是计算机。

假设有这样一个知识需要表示:小潘是计科系的学生,但他不喜欢编程。我们用一阶谓词逻辑来表示它就需要采用如下的步骤:首先,定义谓词。

Computer(x):x是计科系的学生

Like(x,y):x喜欢y

其次,用谓词公式表示之:

Computer(xiaopan)∧not;Like(xiaopan,programing)

产生式规则:在条件、因果等类型的判断中所采用的一种对知识进行表示的方法。其基本的形式是P→Q,或者是if P then Q。

这里这个产生式规则与刚才的谓词逻辑中的“蕴涵(→)式”表示还是有区别的,后者是一种精确的匹配,即如果x,则100%的会是y,而前者则可以表示 一种模糊匹配,有一定的置信度,即发生概率。

例如:if “咳嗽 and 发烧”,then “感冒”,置信度80%。这里if部分表示条件部,then部分表示结论部,置信度表示当满足条件时得到结论的发生概率。这整个部分就形成了一条规则,表示的就是这样一类因果知识:“如果病人发烧且咳嗽,则他很有可能是感冒了”。

因此,针对比较复杂的情况,我们都可以用这种产生式规则的知识表示方式形成一系列的规则。

参考资料:百度百科---知识表示

参考资料:百度百科---知识

人工智能目前常用的知识表示方式有哪些

机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。

知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。

人工智能是人类设计创造出来的,它们的存在无疑为人类现在和将来的生活工作效率等等都是很大的帮助,其实一种事物是否有害,是看用它的是什么样的人,出于什么目的,要是用的得当,以为人类造福为福祉,那就是有利的。

关于人工智能的知识表示的方法主要有和人工智能常用的知识表示方法包括的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

扫码二维码