首页 大数据 正文

大数据导论论述题(大数据导论考点)

大数据 74
今天给各位分享大数据导论论述题的知识,其中也会对大数据导论考点进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、何谓大数据?大数据的特点,意义和缺陷.

今天给各位分享大数据导论论述题的知识,其中也会对大数据导论考点进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

何谓大数据?大数据的特点,意义和缺陷.

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。

大数据,更多的功能是分析过去,提醒现在,展望未来。广泛应用于商业领域,借以实现精准营销,预测趋势,实现商业利益的最优与最大。体现的价值为:

(1)利用大数据针对大量消费者的消费习惯,精准提供产品或服务;

(2)利用大数据做服务转型,做小而美模式;

(3)不能充分利用大数据价值的企业,将会在互联网压力之下摇摇欲坠。

国家通过结合大数据和高性能的分析,是指效率更加提高,同时也能降低国家运行成本。如:

(1)为成千上万的车辆规划实时交通路线,躲避拥堵;

(2)及时解析问题和缺陷的根源,是制度更加完善。

(3)使用点击流分析和数据挖掘来规避欺诈行为。

大数据的缺陷:

企业遭到黑客攻击,客户的资料大量非法流出,再利用大数据分析挖掘,人群进行分类排除,从而让人更容易受骗。

扩展资料:

2016年3月17日,《中华人民共和国国民经济和社会发展第十三个五年规划纲要》发布,其中第二十七章“实施国家大数据战略”提出:把大数据作为基础性战略资源,全面实施促进大数据发展行动,加快推动数据资源共享开放和开发应用,助力产业转型升级和社会治理创新。

具体包括:加快政府数据开放共享、促进大数据产业健康发展。

参考资料:百度百科-大数据

大数据金融-第一章 大数据金融概论

1.大数据与小数据

2.大数据的内涵

(1) 数据类型方面

(2) 技术方法方面

(3) 分析应用方面

3.大数据的特征

多样性:随着互联网的发展和传感器种类的增多,诸如网页、图片、音频、视频、微博类的未加工的半结构化和非结构化数据越来越多,以数量激增、类型繁多的非结构化数据为主。非结构化数据相对于结构化数据而言更加复杂,数据存储和处理的难度增大。

时效性:大数据的时效性是指在数据量特别大的情况下,能够在一定的时间和范围内得到及时处理,这是大数据区别于传统数据挖掘最显著的特征。只有对大数据做到实时创建、实时存储、实时处理和实时分析,才能及时有效的获得高价值的信息。

价值型:包含很多深度的价值,大数据分析挖掘和利用将带来巨大的商业价值。

4.大数据与传统数据的区别

5.大数据的产生背景

1.按照大数据结构分类

2. 按照大数据获取处理方式分类

3.按照其他方式分类

1.销售机会增多

0. 商业大数据的来源

1. 客户

2. 市场

3. 商品

4. 供应链

0. 数据来源

2. 市场与精准营销

3. 客户关系管理

4. 企业运营管理

5. 数据商业化

0. 数据来源

2. 付款定价

3. 研发

4. 新的商业模式

5. 公共健康

1. 营销

2. 服务

3. 运营

4. 风控

大数据金融是指运用 大数据技术和大数据平台 开展 金融活动和金融服务 ,对金融行业 积累的大数据以及外部数据 进行云计算等信息化处理,结合传统金融,开展资金融通、创新金融服务。

1. 呈现方式网络化

大量的金融产品和服务通过网络呈现。

2. 风险管理有所调整

风险管理理念 ——财务分析(第一还款来源)、可抵押财产或其他保证(第二还款来源)重要性将有所降低。

风险定价方式 ——更注重将交易行为的真实性、信用的可信度通过数据来呈现。

对客户的评价 ——全方位、立体的/活生生的。

风险管理的主要手段 ——基于数据挖掘对客户进行识别和分类。

3. 信息不对称降低

4. 金融业务效率提高

在合适的时间、合适的地点,把合适的产品以合适的方式提供给合适的消费者。

5. 金融企业服务边界扩大

由于效率提升,其经营成本必然随之下降,最适合扩大经营规模。

金融从业人员个体服务对象会更多。

6. 产品是可控的、可受的

通过网络化呈现的金融产品,对消费者而言,其收益或成本、产品的流动性是可以接受的,其风险是可控的。

7. 普惠金融

大数据金融的高效率性及扩展的服务边界,使金融服务的对象和范围也大大扩展,金融服务也更接地气。

1. 放贷快捷,精准营销个性化服务

立足长期大量的信用及资金流的大数据基础之上,在任何时点都可以通过计算得出信用评分,并采用网上支付方式,实时根据贷款需要及其信用评分等数据进行放贷。

2. 客户群体大,运营成本低

大数据金融是以大数据云计算为基础,以大数据自动计算为主,不需要大量人工,成本较低,整合了碎片化的需求和供给,服务领域拓展至更多的中小企业和中小客户。

3. 科学决策,有效风控

根据交易借贷行为的违约率等相关指标估计信用评分,运用分布式计算做出风险评估模型,解决信用分配、风险评估、授权实施以及欺诈识别等问题,有效地降低了不良贷款率。

基于 电商平台基础 上形成的网上交易信息与网上支付形成的金融大数据,利用云计算等先进技术对数据进行处理分析而形成的信用或订单融资模式。

典型代表有 阿里小贷 ,基于对电商平台的 交易数据、社交网络的用户交易与交互信息和购物行为习惯 等的大数据通过 云计算 来实时计算得分和分析处理,形成网络商户在电商平台中的累积信用数据,通过电商所构建的网络信用评级体系和金融风险计算模型及风险控制体系,来实时向网络商户发放订单贷款或者信用贷款,例如,阿里小贷可实现数分钟之内发放贷款。

企业利用自身所处的 产业链上下游 (原料商、制造商、分销商、零售商),充分整合供应链资源和客户资源,提供金融服务而形成的金融模式。

京东商城、苏宁易购是供应链金融的典型代表。

在供应链金融模式当中, 电商平台只是作为信息中介提供大数据金融 ,并不承担融资风险及防范风险等。—— 渠道商为核心企业。

数据科学与大数据技术导论报告题目有哪些

大数据导论答案

数据科学的五大要素: A-SATA 模型 分析思维 (Analytical Thinking) 统计模型 (Statistical Model) 算法计算 (Algorithmic Computing) 数据技术 (Data Technology) 综合应用 (Application) 2. 如何辨证看待“大数据”中的“大”和“数据”的关系? 字面理解 Large 、 vast 和 big 都可以用于形容大小 Big 更强调的是相对大小的大,是抽象意义上的大 大数据是抽象的大,是思维方式上的转变 量变带来质变,思维方式,方法论都应该和以往不同 计算机并不能很好解决人工智能中的诸多问题, 利用大数据突破性解决了, 其核 心问题变成了数据问题。 3. 怎么理解科学的范式?今天如何利用这些科学范式? 科学的范式指的是常规科学所赖以运作的理论基础和实践规范, 是从事某一科 学的科学家群体所共同遵从的世界观和行为方式。 第一范式:经验科学 第二范式:理论科学 第三范式:计算科学 第四范式:数据密集型科学 今天,是数据科学,统一于理论、实验和模拟 4. 从人类整个文明的尺度上看, IT 和 DT 对人类的发展有些什么样的影响和冲 击? 以控制为出发点的 IT 时代正在走向激活生产力为目的的 DT ( Data Technology ) 数据时代。 大数据驱动的 DT 时代 由数据驱动的世界观 大数据重新定义商业新模式 大数据重新定义研发新路径 大数据重新定义企业新思维 5. 大数据时代的思维方式有哪些? “大数据时代”和“智能时代”告诉我们: 数据思维:讲故事 数据说话 总体思维:样本数据 全局数据 容错思维:精确性 混杂性、不确定性

查看更多

百度文库

提供内容

分享

点赞

主题:谈谈如何理解“大数据”

可是,这仅仅是对“大数据”的粗浅理解。最早提出“大数据”概念的学科是“天文学”和“基因学”,这两个学科从诞生之日起就依赖于“基于海量数据的分析”方法。大数据可以说是“计算机”和“互联网”结合的产物,计算机实现了数据的“数字化”;互联网实现了数据的“网络化”;两者结合才赋予了“大数据”生命力!随着互联网如同空气、水、电一样无处不在地渗透入我们的工作和生活,加上移动互联网、物联网、可穿戴联网设备的普及,新的“数据”正在以指数级别的加速度产生。据说目前世界上90%的“数据”是互联网出现以后迅速产生的。不过,抛开数据的海量化生产和存储这种表面现象,我们更加要关注的是由数据量变带来的质变,这种“质变”表现在以下3个方面:1)数据思维大数据时代带给我们的是一种全新的“思维方式”,思维方式的改变在下一代成为社会生产中流砥柱的时候就会带来产业的颠覆性变革!- 分析全面的数据而非随机抽样;- 重视数据的复杂性,弱化精确性;- 关注数据的相关性,而非因果关系。历来的商业变革都是由“思维方式的转变”开始的,旧的经济体制和传统的商业理念面临新的商业思维逻辑的时候,如果大脑不能与时俱进,吸收并转变为顺 应潮流的新思维,通过新思维重新组织企业组织的战略、结构、文化和各种策略,那么貌似强大的体魄反而变成了企业前进的累赘。这种新思维颠覆巨头的案例最先 发生在信息技术的传统领域,然后渗透到传统的商业领域:黑莓(Blackberry)、摩托罗拉、诺基亚、柯达、雅虎。。。案例比比皆是!当然,这些企业的没落并不是因为没有“数据思维”,但他们都是被“新互联网思维”淘汰的昔日巨人。“数据思维”是最新的思想,其影响力还没有发展到导致巨头轰然倒塌。但是,如果不给予足够的重视,下一波没落王国的名单中,可能就会有你!2)数据资产大数据时代,我们需要更加全面的数据来提高分析(预测)的准确度,因此我们就需要更多廉价、便捷、自动的数据生产工具。除了我们在互联网虚拟世界使 用浏览器、软件有意或者无意留下的各种“个人信息数据”之外,我们正在用手机、智能手表、智能手环、智能项链等各种可穿戴数码产品生产数据;我们家里的路 由器、电视机、空调、冰箱、饮水机、吸尘器、智能玩具等也开始越来越智能并且具备了联网功能,这些家用电器在更好地服务我们的同时,也在生产大量的数据; 甚至我们出去逛街,商户的路由器,运营商的WLAN和3G,无处不在的摄像头电子眼,百货大楼的自助屏幕,银行的ATM,加油站以及遍布各个便利店的刷卡 机都在收集和生产数据。在互联网领域,我们喜欢说“入口”这个词,“入口”对应的直接意义是“流量”,而流量在互联网领域就意味着“金钱”,这种流量变现可能是广告,可能 是游戏,也可能是电商。在大数据时代,“入口”这个词还有更深刻的意义,那就是“数据生产的源头”,用户通过某个APP或者硬件产品满足某种需求的同事, 也会留下一系列相关的“数据”,这些数据的合理使用可以让拥有这部分数据的企业获得更大的商业利益!所以,在“大数据”时代,意识到“数据也是资产”的公 司都已经开始在各个“数据生产的源头”进行布局,可能是一个解决刚兴需求的WEB网站,也可能是一个单纯的工具APP,还可能是一个可穿戴的数码产品!3)数据变现有了“数据资产”,就要通过“分析”来挖掘“资产”的价值,然后“变现”为用户价值、股东价值甚至社会价值。大数据分析的核心目的就是“预测”,在海量数据的基础上,通过“机器学习”相关的各种技术和数学建模来预测事情发生的可能性并采取相应措施。预测股价、预测机票价格、预测流感等等。“预测事情发生的可能性”继续往下延伸,就可以通过适当的“干预”,来引导事情向着期望的方向发展。

大数据导论考试,求答案

都对,就是预处理那题错了,

数据分析不属于预处理的一部分,集成转换清洗都是预处理。

对大数据的理解,哪些是正确的

“大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,如2014年的两会,我们听得最多的也是大数据分析,那么,什么是大数据呢,大数据时代怎么理解呢,一起来看看吧。

互联网时代的大数据

大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。

大数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到其内在规律。

大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。

大数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对,挖掘主效基因。例子还有很多。

大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。

关于大数据导论论述题和大数据导论考点的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

扫码二维码